Building a Digital Archive of the National Synchrotron Light Source (NSLS)

Jean Elyse Graham
Robert P. Crease
Stony Brook University

Courtesy Brookhaven National Laboratory

Courtesy Brookhaven National Laboratory

From NSLS...

Courtesy Brookhaven National Laboratory

Biomineral Imaging

Courtesy Brookhaven National Laboratory

NSLS Users

Users' field of research breakdown:

• life sciences: 42 percent

materials science: 29 percent

geosciences and ecology: 13 percent

• chemical sciences: 5 percent

optical/nuclear/general physics: 5 percent

applied sciences and engineering: 3 percent

unknown: 3 percent

Geographical user distribution:

New York only: 33 percent

Northeast (not New York): 33 percent

Non-northeast: 20 percent

Foreign: 14 percent

Users by affiliation:

academic: 72 percent

• BNL employees: 10 percent

industry/corporate: 7 percent

other labs and affiliations: 6 percent

DOE employees (non-BNL): 2 percent

Federal agencies (non-DOE): 2 percent

Beamtime used by field of research:

• materials science: 39 percent

• life sciences: 22 percent

environmental and geosciences: 11 percent

applied sciences and engineering: 10 percent

other: 6 percent

optical/nuclear/general physics: 5 percent

chemical sciences: 4 percent

Courtesy Brookhaven National Laboratory

Distinctive Features of New Big Science Research

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks
- 3. Proliferation of subfacilities
- 4. Formation of knowledge
- 5. Research Culture

Investigating the Research Ecosystem

- Operational history
- Administrative History
- Functional History
- Publication History
- Discovery History
- Disciplinary History

science.energy.gov/user-facilities/user-statistics/

Credit:

DOE Office of Science visualization using Maptive, powered by Google Maps APIs.

1. Integration of Industrial Presence from the Beginning

Courtesy Brookhaven National

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks
- 3. The octopoidal character of research networks

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks
- 3. The octopoidal character of research networks
- 4. Multistability of techniques

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks
- 3. The octopoidal character of research networks
- 4. Multistability of techniques
- 5. Proliferation of subfacilities

Courtesy Sandia National Laboratory

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks
- 3. The octopoidal character of research networks
- 4. Multistability of techniques
- 5. Proliferation of subfacilities
- 6. Krinsky Effect

Courtesy Brookhaven National Laboratory

- 1. Integration of industrial presence from beginning
- 2. Scope and complexity of interdisciplinary networks
- 3. The octopoidal character of research networks
- 4. Multistability of techniques
- 5. Proliferation of subfacilities
- 6. Krinsky Effect
- 7. Regulation
- 8. Formation of Knowledge

BNL facilities within the structure of science

Courtesy Brookhaven National Laboratory

Challenges of the New Big Science For Managers/Researchers

- Intellectual Property
- Timely Access
- Presenting the Political Case
- Presenting the Scientific Case

Challenges of the New Big Science For Historians

- What research was carried out at each port, with what instruments, associated with what work at other ports?
- How long did each research program last?
- How was it funded?
- With what industrial/academic/other collaborators?
- With what applications?
- Associated prizes, grants, publications, patents, educational programs (high school and summer school programs, undergraduate and graduate theses served, Westinghouse awards), etc.

Building a Digital Archive of the National Synchrotron Light Source (NSLS)

Jean Elyse Graham
Robert P. Crease
Stony Brook University