MINING AND ANALYSING ONE BILLION REQUESTS TO LINGUISTIC SERVICES

EXPERIENCES AND LESSONS LEARNED FROM RUNNING A LINGUISTIC INFRASTRUCTURE FOR TEN YEARS

Marco Büchler, Thomas Eckart, Greta Franzini, Emily Franzini

TABLE OF CONTENTS

1. Motivation
2. Data description
3. Results

MOTIVATION

WORTSCHATZ PROJECT

- Collection of corpora in more than 230 languages
- Corpora are collected from e.g. RSS feeds, newspapers and other web content
- Delivers further information such word frequencies, statistically-significant bigrams and co-occurrences from different window sizes

In table 1 it is written ...

Language	Number of sen- tences (in M)	Language	Number of sen- tences (in M)
English	1,110	Georgian	30
German	1,023	Bokmål	27
Russian	456	Modern Greek	25
Spanish	244	Lithuanian	20
French	178	Catalan	16
\ldots	\ldots.	\ldots	\ldots

Table 1: Text material of the Leipzig Corpora Collection (excerpt)

MOTIVATION FOR THE LEIPZIG LINGUISTIC SERVICES (LLS)

- <2003: individual dumps of the databases were created, partially even with a graphical user interface
- 2004: personnel costs required for this workflow became unsustainable
- 2004/5: Development of a SOAP-based and SOA-oriented infrastructure containing only microservices

Requirement: a simple but generic architecture that reduces the costs for user responses (email)
Trade-off: A generic architecture can be reused in different scenarios but tends to have too many parameters and options, while a simple architecture claims usability and guarantees a faster learning curve.

USERS \& USER GROUPS

- Research
- Text profiling and authorship attribution
- Used as resource for sentiment analysis
- Business
- Primary interest were services such as Baseform and Synonyms for improving internal search indexes (enterprise search)
- Usage in portals for weighting words in a word cloud or to display enriching information
- Private
- A dedicated service was installed upon request to support crossword puzzling
- Integration in OpenOffice to use e.g. the better Thesaurus-service

AUTOMATICALLY GENERATED GRAPHICAL USER INTERFACES

File

File

Request	Result	
		wort bin
Compuart		
compucut		
Compulac		
Compulted		
Compunet		
CompuTel		
Compuadd		
compuart		
compucom		
Compular		
Compulaw		
Compuman		
Compumed		
Compunet		
Compusec		
compuset		
Compusys		
computas		
computax		
Computec		
Computed		
Computek		
Computel		
Computem		
computer		
computex		
Computip		
computus		

OPENOFFICE INTEGRATION (EXAMPLE FROM 2005)

Figure 1: OpenOffice integration of the Leipzig Linguistic Services.

DATA DESCRIPTION

DATA DESCRIPTION OF THE LOG-FILES

Request:

2006-09-19T08:43:32+01:00 - anonymous - Baseform - 81.169.187.22 - IN -
0 - execute - Wort=privilegium majus

Response:
2006-09-19T08:43:32+01:00 - anonymous - Baseform - 81.169.187.22 - OUT 0 - execute - $(0,0)-0.03 s$

Remark:
Requests and responses are stored separately in order to be able to detect the number of active requests from log-files.

RESULTS

SERVICE DISTRIBUTION

Service	Requests	Requests (\%)	Non-empty responses	Coverage (\%)	Input Fields	Webservice Type	Access level	Installation date
Baseform	624,275,884	64.636\%	315,724,185	50.57\%	W	MySQLSelect	FREE	04/2005
Category	120,476,452	12.473\%	43,276,840	35.92\%	W	MySQLSelect	FREE	04/2005
Thesaurus	69,573,648	7.203\%	37,151,565	53.39\%	W, L	MySQLSelect	FREE	04/2005
Synonyms	60,745,973	6.289\%	2,719,544	4.47\%	W, L	MySQLSelect	FREE	04/2005
Sentences	60,087,714	6.221\%	11,536,172	19.19\%	W, L	MySQLSelect	FREE	04/2005
Wordforms	12,671,302	1.311\%	4,309,791	34.01\%	W, L	MySQLSelect	FREE	04/2005
Frequencies	11,932,213	1.235\%	8,095,420	67.84\%	W	MySQLSelect	FREE	04/2005
LeftCollocationFinder	1,416,001	0.146\%	295,714	20.88\%	W, PoS, L	MySQLSelect	FREE	10/2005
RightCollocationFinder	1,379,356	0.142\%	235,323	17.06\%	W, PoS, L	MySQLSelect	FREE	10/2005
Cooccurrences	1,057,722	0.109\%	629,795	59.54\%	W, ST, L	MySQLSelect	FREE	04/2005
RightNeighbours	959,560	0.099\%	567,870	59.18\%	W, L	MySQLSelect	FREE	04/2005
LeftNeighbours	731,449	0.075\%	473,600	64.74\%	W, L	MySQLSelect	FREE	04/2005
Similarity	467,809	0.048\%	308,877	66.02\%	W, L	MySQLSelect	FREE	10/2005
CooccurrencesAll	20,852	0.002\%	20,848	99.98\%	W, ST, L	MySQLSelect	INTERN	05/2009
ExperimentalSynonyms	20,779	0.002\%	14,860	71.51\%	W, L	MySQLSelect	FREE	12/2009
Crossword puzzling	2,902	$<0.001 \%$	1,306	45.00\%	W, WL, L	MySQLSelect	FREE	10/2005
MARSService	616	$<0.001 \%$	616	100.00\%	W, L	MARS	INTERN	10/2006
NGrams	564	$<0.001 \%$	149	26.41\%	P, L	MySQLSelect	FREE	08/2011
NGramReferences	409	$<0.001 \%$	87	21.27\%	P, L	MySQLSelect	FREE	08/2011
Common co-occurrence	55	$<0.001 \%$	43	78.18\%	W1, W2, L	MySQLSelect	INTERN	10/2005
TOTAL	965,821,260		425,362,605					

Table II
Overview of requests made to LLS between 2006-2014, in descending order. The Responses columns only list responses whose value was not empty. For space reasons, the values in the Input Fields column are abbreviated: Word (W.), Limit (L.), Part of Speech pattern (PoS), Significance Threshold (ST), Word length (WL) and Pattern (P)

Service	Requests	Requests (\%)	Non-empty responses	Coverage (\%)	Input Fields	Webservice Type	Access level	Installation date
Baseform	624,275,884	64.636\%	315,724,185	50.57\%	W	MySQLSelect	FREE	04/2005
Category	120,476,452	12.473\%	43,276,840	35.92\%	W	MySQLSelect	FREE	04/2005
Thesaurus	69,573,648	7.203%	37,151,565	53.39%	W, L	MySQLSelect	FREE	04/2005
Synonyms	60,745,973	6.289%	$2.719,544$	4.47\%	W, L	MySQLSelect	FREE	04/2005
Sentences	60,087,714	6.221%	11,536,172	19.19\%	W, L	MySQLSelect	FREE	04/2005
Wordforms	12,671,302	1.311\%	4,309,791	34.01\%	W, L	MySQLSelect	FREE	04/2005
Frequencies	11,932,213	1.235\%	8,095,420	67.84\%	W	MySQLSelect	FREE	04/2005
LeftCollocationFinder	1,416,001	0.146\%	295,714	20.88\%	W, PoS, L	MySQLSelect	FREE	10/2005
RightCollocationFinder	1,379,356	0.142\%	235,323	17.06\%	W, PoS, L	MySQLSelect	FREE	10/2005
Cooccurrences	1,057,722	0.109\%	629,795	59.54\%	W, ST, L	MySQLSelect	FREE	04/2005
RightNeighbours	959,560	0.099\%	567,870	59.18\%	W, L	MySQLSelect	FREE	04/2005
LeftNeighbours	731,449	0.075\%	473,600	64.74\%	W, L	MySQLSelect	FREE	04/2005
	467,809	0.048%	308,877	66.02\%	W, L			$10 / 2005$
CooccurrencesAll	20,852	0.002\%	20.848	99.98\%	W, ST, L	MySQLSelect	INTERN	$05 / 2009$
ExperimentalSynonyms	20,779	0.002\%	14,860	71.51%	W, L	MySQLSelect	FREE	$12 / 2009$
Crossword puzzling	2,902	< 0.001%	1,306	45.00\%	W, WL, L	MySQLSelect	FREE	10/2005
MARSService	616	$<0.001 \%$	616	100.00\%	W, L	MARS	INTERN	10/2006
NGrams	564	$<0.001 \%$	149	26.41\%	P, L	MySQLSelect	FREE	08/2011
NGramReferences	409	$<0.001 \%$	87	21.27\%	P, L	MySQLSelect	FREE	08/2011
Common co-occurrence	55	$<0.001 \%$	43	78.18\%	W1, W2, L	MySQLSelect	INTERN	10/2005
TOTAL	965,821,260		425,362,605					

Table II
OVERVIEW OF REQUESTS MADE TO LLS BETWEEN 2006-2014, IN DESCENDING ORDER. THE Responses COLUMNS ONLY LIST RESPONSES WHOSE value was not empty. For space reasons, the values in the Input Fields column are abbreviated: Word (W.), Limit (L.), Part of Speech pattern (PoS), Significance Threshold (ST), Word length (WL) AND Pattern (P)

Lessons learned: Users prefer precision over recall.

NUMBER OF REQUESTS PER YEAR BETWEEN 2006 AND 2014

Lessons learned: Don't change the settings of a running system!

WHAT DID USERS ALSO SEND?

Cleanliness of requests:

Rule	Matched requests (in \% of all)
Broken encoding	$66,869,667(6.920 \%)$
Query too short	$2,978,216(0.310 \%)$
URLs, HTML code, email addresses, etc.	$189,895(0.019 \%)$
Query too long (more than 200 characters)	$69,799(0.007 \%)$

Table 2: Applied rules for "cleanliness" of queries (excerpt)

Lessons learned: At least 71 million request (7.4\%) are noise from crawled and badly extracted web content.

HOW DID USERS COMBINE REQUESTS TO FORM CHAINS?

Detected and useful service chains:

Rank	Service chain	Percentage
1	Baseform Frequencies	67.11%
2	Baseform Synonyms Sentences	26.32%
3	Synonym Sentences	3.00%
4	Baseform Synonyms	1.01%
5	Baseform Frequencies Synonyms	0.97%
6	Baseform Thesaurus	0.68%
7	Baseform Frequencies Category	0.24%
8	Baseform Category	0.24%
9	Frequencies Baseform Frequencies	0.23%
10	Thesaurus Similarity	0.20%

Table 3: List of top-ten most frequently discovered service chains

Six chains, represented by the ranks $2,4,5,6,7$ and 8 , following the Baseform * [Synonym|Thesaurus|Category]* pattern.

MINED SERVICE CHAINS BY PRAGMATIC USAGE

However, chains such as:

Baseform Synonyms Sentences Baseform Synonyms Sentences
were more critical as they doubled one of the core chains.

This discovery can be explained with the following example:

```
If I had had enough flour, I would have made more brownies.
```

Lessons learned: Automatic installation of aggregated chains is not feasible. However, the discovery helps to identify candidates followed by human judgement.

FURTHER RESULTS IN THE PAPER

- Suggestions for load balancing based on user requests
- Influence of multi-word units on the results
- Corpus-building, corpus representativeness and corpus balancing
- Interoperability issues of the SOAP protocol in different programming languages
- Results of benchmarks for SOAP- and REST-based web-services
- For REST-based services: Comparison of standoff- vs. inline-markup

CONTACT

Speaker

Marco Büchler, Thomas Eckart, Greta Franzini, Emily Franzini.

Visit us

http://www.etrap.eu
(@) contact@etrap.eu
@ teckart@informatik.uni-leipzig.de

UNIVERSITAT LEIPZIG

GEORG-AUGUST-UNIVERSITÄT
SPONSORED BY THE

Federal Ministry of Education and Research

ARCHITECTURE OF THE LLS

Figure 2: Four workflow modes with separation of concern: editing (yellow); managing, compiling and deploying (red); hosting and operating (blue); using the LLS infrastructure (green).

GEOGRAPHICAL DISTRIBUTION OF THE LLS

Country	Requests	Percentage
Germany (DE)	$921,184,562$	99.29%
Ireland (IE)	$2,003,348$	0.22%
Swiss (CH)	$1,957,431$	0.21%
Austria (AT)	$1,347,703$	0.13%
Hungary (HU)	302,966	0.03%
Poland (PL)	212,357	0.02%
Japan (JP)	184,408	0.02%
Romania (RO)	90,140	0.01%
China (CN)	90,125	0.01%
France (FR)	82,969	$<0.01 \%$

Table 4: Top-ten list of requests by country for the years 2006-2014

LICENCE

The theme this presentation is based on is licensed under a Creative Commons Attribution-ShareAlike 4.O International License. Changes to the theme are the work of eTRAP.

(c)(1)(0)

